Subtraction

minuend - subtrahend $=$ difference

Mental strategies

Children first learn how to solve subtraction calculations in their head. There are many strategies for this and children are encouraged to explore all of them and begin to make decisions about which ones would be useful for different questions.

Crossing out

Year 1

Children start with the total amount of items and then cross out the ones that are being removed to see how many are left.

Although this strategy is not explicitly taught further up the school, it is often useful or referred back to.

Number bonds

Year 1

In reception, children learnt that numbers can be split into parts. In Year 1, this is then looked at in terms of subtraction. The children know that 7 is made up of 5 and 2 so this becomes $7-5=2$.

[^0]2 boats are not red.

Although this strategy is not explicitly taught further up the school, it is often useful or referred back to.

Counting back

Year 1

Children learn to start with the initial amount and then count back in ones the required amount.

Year 2
Children count back in ones from any 2-digit number:
Method $1 \quad$ Count back from 28.

Children also learn to count back in tens from any 2-digit number:

36, 26, 16

Year 3

From year 2, children count back in ones and tens from any 3-digit number.

They also learn to count back in hundreds from any 3-digit number:

Count back in hundreds from 658.
$658-500=158$
$658,558,458,358,258,158$

Count back in tens from 36.

$$
36-20=16
$$

Year 5
Children count back in multiples of 10, 100, 1000 and 10000 from any 6 -digit number.

Subtracting from ten

Year 1

Children partition the number into ten and one. They subtract from the ten and then add the ones back on.

Year 2

As with year 1, children partition the number into ten and another part. They subtract from the ten and then add the other part back on again.

Subtracting from one value (ones, tens, hundreds etc.)

Year 1

Children start by partitioning a number into tens and ones. They subtract the ones from the ones and then finally add the tens back on.

Year 3

Children apply what they learnt in years 1 and 2 to three-digit numbers. They also partition numbers to subtract only hundreds.

Unitising

Year 2

Children learn to change the units of a calculation. In year 2, they apply this to subtracting tens.

$$
4-1=3
$$

Key Stage 2

Although this strategy is not taught in Key Stage 2, it is used when solving written methods. Children subtract ones, tens, hundreds and thousands by changing the units.

Subtract the ones.
7 ones -6 ones $=1$ one
Subtract the tens.
3 tens -1 ten $=2$ tens
Subtract the hundreds.
4 hundreds - 0 hundreds $=4$ hundreds
Subtract the thousands.
3 thousands -2 thousands $=1$ thousand

Compensating

Year 4

When subtracting from a number with a lot of zeros, children can change the number (in this example 5000 becomes 4999) as this makes the subtraction easier. They must then remember to compensate for this and add the given amount back on again.
(3) $5000-2179=2821$

$$
4999-2179=2820
$$

```
Can you use 4999-2179=2820
to work out 5000-2179=2821 ?
```


Counting on

Year 4

When subtracting numbers that are close together, children can count on from the smaller number to find the difference between them.
4021-3987 =

```
3987->3990 -> 4000 ->4021
```


Written strategies

The main written strategy for solving subtraction problems is column subtraction. This should only be used when the calculation is too difficult to solve mentally.

Year 2 Teaching begins with 2-digit numbers. Concrete resources (Dienes) are always used to support understanding.	Year 3 Teaching continues with 3-digit numbers. Children start with no renaming and Dienes are still used:	Year 4 Teaching continues with 4-digit numbers. As with year 3, children start with no renaming but are now using place value counters to support them:
Children start by subtracting a 1-digit number from a 2-digit number where there is no renaming.		

$$
28-3=25
$$

Next, they move onto a 2-digit number subtract a multiple of ten.
Step 1 Subtract the ones.

Step 2 Subtract the tens.
3 tens -2 tens $=1$ ten

$36-20=16$

Next, they subtract two 2-digit numbers with no renaming.

$$
\text { Step } 1
$$

 5 ones -3 ones $=2$.

Step 2 Subtract the tens.
7 tens -2 tens $=5$ tens

Step 3 Subtract the hundreds.
9 hundreds -7 hundreds $=2$ hundreds

$975-723=252$

Across a number of lessons, the children start to use more and more renaming. Starting in one place and then moving onto renaming in all the places:

$\begin{array}{lll}3 & 4 & 3\end{array}$
20
-24

Across a number of lessons, children are taught to use renaming in all of the different places:
Subtract 2385 from 6531.

There aren't enough ones.

Step 1 Subtract the ones.
7 ones -4 ones $=3$ ones

Step 2 Subtract the tens.

$$
3 \text { tens }-2 \text { tens }=1 \text { ten }
$$

$$
37-24=13
$$

Finally, they subtract two 2-digit numbers with renaming. Dienes are used to support the understanding of renaming 23 (in this example) into 1 ten (10) and 13 ones.

Regroup 1 ten into 10 one
Subtract the ones.
13 ones -5 ones $=8$ ones

Step 2 Subtract the tens.

$23-5=18$

Step 2 Regroup 1 hundred into 10 tens.
Subtract the tens.

Step 3 Subtract the hundreds.

$608-135=473$
The children also have to look at what to do when there aren't enough to rename in one of the places.

The children also have to look at what to do when there aren't enough to rename in one of the places.

5000

The strategy is used in Years 5 and 6 to solve calculations with 5 and 6-digit numbers and decimals, but there is no explicit teaching as children should be confident by this point.

[^0]: $7-5=2$

